A novel regulatory axis of MSI2-AGO2/miR-30a-3p-CGRRF1 drives cancer chemoresistance by upregulating the KRAS/ERK pathway

MSI2-AGO2/miR-30a-3p-CGRRF1 的新调控轴通过上调 KRAS/ERK 通路来驱动癌症化学耐药性

阅读:5
作者:Runhui Lu, Yafan Zhang, Ran Chen, Lian Li, Caihu Huang, Zihan Zhou, Yingting Cao, Hongyan Li, Junya Li, Yixin Zhang, Yanli Wang, Jian Huang, Xian Zhao, Jing Feng, Jianxiu Yu, Chunling Du

Abstract

The KRAS/ERK pathway is crucial in cancer progression and chemotherapy resistance, yet its upstream regulatory mechanism remains elusive. We identified MSI2 as a new promoter of chemotherapy resistance in cancers. MSI2 directly binds to a specific class of mature miRNAs by recognizing the 'UAG' motif and interacts with the essential effector AGO2, highlighting MSI2 as a novel regulatory factor within the miRNA pathway. Specifically, MSI2 recruits UAG-miRNA miR-30a-3p to facilitate its loading onto AGO2, efficiently inhibiting the expression of CGRRF1. Further analysis reveals that CGRRF1 functions as a new ubiquitin E3 ligase for KRAS, mediating the ubiquitination and proteasome degradation of KRAS. Consequently, a novel regulatory axis involving MSI2-AGO2/miR-30a-3p-CGRRF1 positively regulates the KRAS/ERK pathway. Remarkably, platinum-based chemotherapy drugs significantly enhance the levels of phosphorylated ERK1/2 (p-ERK1/2) in cancer cells, and the EGFR inhibitor Gefitinib also increases p-ERK1/2 levels in Gefitinib-resistant cancer cells. Combining small-molecule inhibitors targeting MSI2, such as Ro 08-2750, efficiently alleviated chemoresistance in tumor cells exposed to Platinum and Gefitinib. These findings suggest that MSI2 could be a novel therapeutic target for developing strategies to counteract cancer resistance to treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。