Major Facilitator Superfamily Domain Containing 5 Inhibition Reduces Lipoprotein(a) Uptake and Calcification in Valvular Heart Disease

含有 5 个主要促进因子超家族结构域的抑制剂可降低心脏瓣膜疾病中的脂蛋白 (a) 摄取和钙化

阅读:6
作者:Maximillian A Rogers #, Francesca Bartoli-Leonard #, Kang H Zheng #, Aeron M Small, Hao Yu Chen, Cassandra L Clift, Takaharu Asano, Shiori Kuraoka, Mark C Blaser, Katelyn A Perez, Pradeep Natarajan, Calvin Yeang, Erik S G Stroes, Sotirios Tsimikas, James C Engert, George Thanassoulis, Christopher J

Background

High circulating levels of Lp(a) (lipoprotein[a]) increase the risk of atherosclerosis and calcific aortic valve disease, affecting millions of patients worldwide. Although atherosclerosis is commonly treated with low-density lipoprotein-targeting therapies, these do not reduce Lp(a) or risk of calcific aortic valve disease, which has no available drug therapies. Targeting Lp(a) production and catabolism may provide therapeutic benefit, but little is known about Lp(a) cellular uptake.

Conclusions

MFSD5 knockdown suppressing human valvular cell Lp(a) uptake and calcification, along with meta-analysis of MFSD5 variants associating with aortic stenosis, supports further preclinical assessment of MFSD5 in cardiovascular diseases, the leading cause of death worldwide.

Methods

Here, unbiased ligand-receptor capture mass spectrometry was used to identify MFSD5 (major facilitator superfamily domain containing 5) as a novel receptor/cofactor involved in Lp(a) uptake.

Results

Reducing MFSD5 expression by a computationally identified small molecule or small interfering RNA suppressed Lp(a) uptake and calcification in primary human valvular endothelial and interstitial cells. MFSD5 variants were associated with aortic stenosis (P=0.027 after multiple hypothesis testing) with evidence suggestive of an interaction with plasma Lp(a) levels. Conclusions: MFSD5 knockdown suppressing human valvular cell Lp(a) uptake and calcification, along with meta-analysis of MFSD5 variants associating with aortic stenosis, supports further preclinical assessment of MFSD5 in cardiovascular diseases, the leading cause of death worldwide.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。