Hydrogen sulfide improves survival after cardiac arrest and cardiopulmonary resuscitation via a nitric oxide synthase 3-dependent mechanism in mice

硫化氢通过一氧化氮合酶 3 依赖机制提高小鼠心脏骤停和心肺复苏后的存活率

阅读:5
作者:Shizuka Minamishima, Masahiko Bougaki, Patrick Y Sips, Jia De Yu, Yoji Andrew Minamishima, John W Elrod, David J Lefer, Kenneth D Bloch, Fumito Ichinose

Background

Sudden cardiac arrest (CA) is one of the leading causes of death worldwide. We sought to evaluate the impact of hydrogen sulfide (H(2)S) on the outcome after CA and cardiopulmonary resuscitation (CPR) in mouse.

Conclusions

These results suggest that administration of Na(2)S at the time of CPR improves outcome after CA possibly via a nitric oxide synthase 3-dependent signaling pathway.

Results

Mice were subjected to 8 minutes of normothermic CA and resuscitated with chest compression and mechanical ventilation. Seven minutes after the onset of CA (1 minute before CPR), mice received sodium sulfide (Na(2)S) (0.55 mg/kg IV) or vehicle 1 minute before CPR. There was no difference in the rate of return of spontaneous circulation, CPR time to return of spontaneous circulation, and left ventricular function at return of spontaneous circulation between groups. Administration of Na(2)S 1 minute before CPR markedly improved survival rate at 24 hours after CPR (15/15) compared with vehicle (10/26; P=0.0001 versus Na(2)S). Administration of Na(2)S prevented CA/CPR-induced oxidative stress and ameliorated left ventricular and neurological dysfunction 24 hours after CPR. Delayed administration of Na(2)S at 10 minutes after CPR did not improve outcomes after CA/CPR. Cardioprotective effects of Na(2)S were confirmed in isolated-perfused mouse hearts subjected to global ischemia and reperfusion. Cardiomyocyte-specific overexpression of cystathionine gamma-lyase (an enzyme that produces H(2)S) markedly improved outcomes of CA/CPR. Na(2)S increased phosphorylation of nitric oxide synthase 3 in left ventricle and brain cortex, increased serum nitrite/nitrate levels, and attenuated CA-induced mitochondrial injury and cell death. Nitric oxide synthase 3 deficiency abrogated the protective effects of Na(2)S on the outcome of CA/CPR. Conclusions: These results suggest that administration of Na(2)S at the time of CPR improves outcome after CA possibly via a nitric oxide synthase 3-dependent signaling pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。