Hyperhomocysteinemia promotes inflammatory monocyte generation and accelerates atherosclerosis in transgenic cystathionine beta-synthase-deficient mice

高同型半胱氨酸血症促进炎症单核细胞生成并加速转基因胱硫醚β合酶缺陷小鼠的动脉粥样硬化

阅读:6
作者:Daqing Zhang, Xiaohua Jiang, Pu Fang, Yan Yan, Jian Song, Sapna Gupta, Andrew I Schafer, William Durante, Warren D Kruger, Xiaofeng Yang, Hong Wang

Background

Hyperhomocysteinemia (HHcy) is an independent risk factor for cardiovascular disease. Monocytes display inflammatory and resident subsets and commit to specific functions in atherogenesis. In this study, we examined the hypothesis that HHcy modulates monocyte heterogeneity and leads to atherosclerosis.

Conclusions

HHcy promotes differentiation of inflammatory monocyte subsets and their accumulation in atherosclerotic lesions via NAD(P)H oxidase-mediated oxidant stress.

Results

We established a novel atherosclerosis-susceptible mouse model with both severe HHcy and hypercholesterolemia in which the mouse cystathionine beta-synthase (CBS) and apolipoprotein E (apoE) genes are deficient and an inducible human CBS transgene is introduced to circumvent the neonatal lethality of the CBS deficiency (Tg-hCBS apoE(-/-) Cbs(-/-) mice). Severe HHcy accelerated atherosclerosis and inflammatory monocyte/macrophage accumulation in lesions and increased plasma tumor necrosis factor-alpha and monocyte chemoattractant protein-1 levels in Tg-hCBS apoE(-/-) Cbs(-/-) mice fed a high-fat diet. Furthermore, we characterized monocyte heterogeneity in Tg-hCBS apoE(-/-) Cbs(-/-) mice and another severe HHcy mouse model (Tg-S466L Cbs(-/-)) with a disease-relevant mutation (Tg-S466L) that lacks hyperlipidemia. HHcy increased monocyte population and selective expansion of inflammatory Ly-6C(hi) and Ly-6C(mid) monocyte subsets in blood, spleen, and bone marrow of Tg-S466L Cbs(-/-) and Tg-hCBS apoE(-/-) Cbs(-/-) mice. These changes were exacerbated in Tg-S466L Cbs(-/-) mice with aging. Addition of l-homocysteine (100 to 500 micromol/L), but not l-cysteine, maintained the Ly-6C(hi) subset and induced the Ly-6C(mid) subset in cultured mouse primary splenocytes. Homocysteine-induced differentiation of the Ly-6C(mid) subset was prevented by catalase plus superoxide dismutase and the NAD(P)H oxidase inhibitor apocynin. Conclusions: HHcy promotes differentiation of inflammatory monocyte subsets and their accumulation in atherosclerotic lesions via NAD(P)H oxidase-mediated oxidant stress.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。