In silico and in vivo Investigations of the Immunoreactivity of Klebsiella pneumoniae OmpA Protein as a Vaccine Candidate

肺炎克雷伯菌 OmpA 蛋白作为疫苗候选物的免疫反应性的计算机和体内研究

阅读:9
作者:Shahla Shahbazi, Farzad Badmasti, Mehri Habibi, Samira Sabzi, Narjes Noori Goodarzi, Mehdi Farokhi, Mohammad Reza Asadi Karam

Background

The growing threat of antibiotic resistance and Klebsiella pneumoniae infection in healthcare settings highlights the urgent need for innovative solutions, such as vaccines, to address these challenges. This study sought to assess the potential of using K. pneumoniae outer membrane protein A (OmpA) as a vaccine candidate through both in silico and in vivo analyses.

Conclusion

This study is a significant advancement in the development of a potential vaccine against K. pneumoniae that relies on OmpA. Nevertheless, additional experimental analyses are required.

Methods

The study examined the OmpA protein sequence for subcellular localization, antigenicity, allergenicity, similarity to the human proteome, physicochemical properties, B-cell epitopes, MHC binding sites, tertiary structure predictions, molecular docking, and immune response simulations. The ompA gene was cloned into the pET-28a (+) vector, expressed, purified and confirmed using Western blotting analysis. IgG levels in the serum of the immunized mice were measured using ELISA with dilutions ranging from 1:100 to 1:6400, targeting recombinant outer membrane protein A (rOmpA) and K. pneumoniae ATCC 13883. The sensitivity and specificity of the ELISA method were also assessed.

Results

The bioinformatics analysis identified rOmpA as a promising vaccine candidate. The immunized group demonstrated significant production of specific total IgG antibodies against rOmpA and K. pneumoniae ATCC1 13883, as compared to the control group (p < 0.0001). The titers of antibodies produced in response to bacterial exposure did not show any significant difference when compared to the anti-rOmpA antibodies (p > 0.05). The ELISA test sensitivity was 1:3200, and the antibodies in the serum could accurately recognize K. pneumoniae cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。