Early response mechanisms of perennial ryegrass (Lolium perenne) to phosphorus deficiency

多年生黑麦草(Lolium perenne)对磷缺乏的早期反应机制

阅读:6
作者:Stephen L Byrne, Alexandre Foito, Pete E Hedley, Jenny A Morris, Derek Stewart, Susanne Barth

Aims

Improving phosphorus (P) nutrient efficiency in Lolium perenne (perennial ryegrass) is likely to result in considerable economic and ecological benefits. To date, research into the molecular and biochemical response of perennial ryegrass to P deficiency has been limited, particularly in relation to the early response mechanisms. This study aimed to identify molecular mechanisms activated in response to the initial stages of P deficiency.

Background and aims

Improving phosphorus (P) nutrient efficiency in Lolium perenne (perennial ryegrass) is likely to result in considerable economic and ecological benefits. To date, research into the molecular and biochemical response of perennial ryegrass to P deficiency has been limited, particularly in relation to the early response mechanisms. This study aimed to identify molecular mechanisms activated in response to the initial stages of P deficiency.

Conclusions

The transcriptome and metabolome of perennial ryegrass undergo changes in response to reductions in P supply after 24 h.

Methods

A barley microarray was successfully used to study gene expression in perennial ryegrass and this was complemented with gas chromatography-mass spectrometry metabolic profiling to obtain an overview of the plant response to early stages of P deficiency. Key

Results

After 24 h of P deficiency, internal phosphate concentrations were reduced and significant alterations were detected in the metabolome and transcriptome of two perennial ryegrass genotypes. Results indicated a replacement of phospholipids with sulfolipids and the utilization of glycolytic bypasses in response to P deficiency in perennial ryegrass. Conclusions: The transcriptome and metabolome of perennial ryegrass undergo changes in response to reductions in P supply after 24 h.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。