Machine Learning Guided Discovery of Non-Hemolytic Membrane Disruptive Anticancer Peptides

机器学习指导发现非溶血膜破坏性抗癌肽

阅读:9
作者:Elena Zakharova, Markus Orsi, Alice Capecchi, Jean-Louis Reymond

Abstract

Most antimicrobial peptides (AMPs) and anticancer peptides (ACPs) fold into membrane disruptive cationic amphiphilic α-helices, many of which are however also unpredictably hemolytic and toxic. Here we exploited the ability of recurrent neural networks (RNN) to distinguish active from inactive and non-hemolytic from hemolytic AMPs and ACPs to discover new non-hemolytic ACPs. Our discovery pipeline involved: 1) sequence generation using either a generative RNN or a genetic algorithm, 2) RNN classification for activity and hemolysis, 3) selection for sequence novelty, helicity and amphiphilicity, and 4) synthesis and testing. Experimental evaluation of thirty-three peptides resulted in eleven active ACPs, four of which were non-hemolytic, with properties resembling those of the natural ACP lasioglossin III. These experiments show the first example of direct machine learning guided discovery of non-hemolytic ACPs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。