Tyrosine-dependent basolateral targeting of human connexin43-eYFP in Madin-Darby canine kidney cells can be disrupted by the oculodentodigital dysplasia mutation L90V

犬 Madin-Darby 肾细胞中人类连接蛋白 43-eYFP 的酪氨酸依赖性基底外侧靶向作用可能因眼牙指发育不良突变 L90V 而受到破坏

阅读:10
作者:Jana Chtchetinin, Wes D Gifford, Sichen Li, William A Paznekas, Ethylin Wang Jabs, Albert Lai

Abstract

Polarized membrane sorting of connexin 43 (Cx43) has not been well-characterized. Based on the presence of a putative sorting signal, YKLV(286-289), within its C-terminal cytoplasmic domain, we hypothesized that Cx43 is selectively expressed on the basolateral surface of Madin-Darby canine kidney (MDCK) cells in a tyrosine-dependent manner. We generated stable MDCK cell lines expressing human wild-type and mutant Cx43-eYFP, and analyzed the membrane localization of Cx43-eYFP within polarized monolayers using confocal microscopy and selective surface biotinylation. We found that wild-type Cx43-eYFP was selectively targeted to the basolateral membrane domain of MDCK cells. Substitution of alanine for Y286 disrupted basolateral targeting of Cx43-eYFP. Additionally, substitution of a sequence containing the transferrin receptor internalization signal, LSYTRF, for PGYKLV(284-289) also disrupted basolateral targeting. Taken together, these results indicate that Y286 in its native amino acid sequence is necessary for targeting Cx43-eYFP to the basolateral membrane domain of MDCK cells. To determine whether the F52dup or L90V oculodentodigital dysplasia-associated mutations could affect polarized sorting of Cx43-eYFP, we analyzed the expression of these Cx43-eYFP mutant constructs and found that the L90V mutation disrupted basolateral expression. These findings raise the possibility that some oculodentodigitial dysplasia-associated mutations contribute to disease by altering polarized targeting of Cx43.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。