RTA-408 protects against propofol-induced cognitive impairment in neonatal mice via the activation of Nrf2 and the inhibition of NF-κB p65 nuclear translocation

RTA-408 通过激活 Nrf2 和抑制 NF-κB p65 核转位预防丙泊酚引起的新生小鼠认知障碍

阅读:6
作者:Ling Zhang, Qian Zhou, Chun-Li Zhou

Conclusion

RTA-408 improved propofol-induced cognitive impairment in neonatal mice via enhancing survival of neurons, reducing the apoptosis of hippocampal neurons, mitigating the inflammation and oxidative stress, which may be correlated with the activation of Nrf2 and the inhibition of NF-κB p65 nuclear translocation.

Methods

C57BL/6 neonatal mice were randomized into intralipid, propofol, vehicle + propofol, and RTA-408 + propofol groups. The learning and memory ability was inspected by Morries water maze (MWM) test. TUNEL staining was performed to examine the apoptosis of neurons in hippocampus. The gene and protein expressions in hippocampus were detected by immunohistochemistry, qRT-PCR, or Western blotting. The activities of glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase (CAT) were tested by the corresponding kits.

Objective

To explore the effect of RTA-408 on the propofol-induced cognitive impairment of neonatal mice via regulating Nrf2 and NF-κB p65 nuclear translocation.

Results

Propofol prolonged escape latency of mice, decreased the times of crossing the platform, and shortened the time of staying in the target quadrant, while RTA-408 treatment improved the above-mentioned situation. Besides, Nrf2 protein in hippocampus of mice induced by propofol was decreased with the increased NF-κB p65 nuclear translocation, which was reversed by RTA-408. Meanwhile, RTA-408 decreased the apoptosis of neurons accompanying with the down-regulation of Caspase-3 and the up-regulations of neuronal-specific nuclear protein (NeuN), microtubule-associated protein 2 (Map2), Ca2+ /Calmodulin-dependent Protein Kinase II (CaMKII), and parvalbumin (PV) immunostaining in hippocampus. Besides, propofol-induced high levels of proinflammatory cytokines and antioxidase activities in hippocampus were reduced by RTA-408.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。