A roadmap for natural product discovery based on large-scale genomics and metabolomics

基于大规模基因组学和代谢组学的天然产物发现路线图

阅读:8
作者:James R Doroghazi, Jessica C Albright, Anthony W Goering, Kou-San Ju, Robert R Haines, Konstantin A Tchalukov, David P Labeda, Neil L Kelleher, William W Metcalf

Abstract

Actinobacteria encode a wealth of natural product biosynthetic gene clusters, whose systematic study is complicated by numerous repetitive motifs. By combining several metrics, we developed a method for the global classification of these gene clusters into families (GCFs) and analyzed the biosynthetic capacity of Actinobacteria in 830 genome sequences, including 344 obtained for this project. The GCF network, comprising 11,422 gene clusters grouped into 4,122 GCFs, was validated in hundreds of strains by correlating confident mass spectrometric detection of known small molecules with the presence or absence of their established biosynthetic gene clusters. The method also linked previously unassigned GCFs to known natural products, an approach that will enable de novo, bioassay-free discovery of new natural products using large data sets. Extrapolation from the 830-genome data set reveals that Actinobacteria encode hundreds of thousands of future drug leads, and the strong correlation between phylogeny and GCFs frames a roadmap to efficiently access them.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。