Control-independent mosaic single nucleotide variant detection with DeepMosaic

使用 DeepMosaic 进行不依赖对照的马赛克单核苷酸变异检测

阅读:10
作者:Xiaoxu Yang #, Xin Xu #, Martin W Breuss, Danny Antaki, Laurel L Ball, Changuk Chung, Jiawei Shen, Chen Li, Renee D George, Yifan Wang, Taejeong Bae, Yuhe Cheng, Alexej Abyzov, Liping Wei, Ludmil B Alexandrov, Jonathan L Sebat; NIMH Brain Somatic Mosaicism Network; Joseph G Gleeson6

Abstract

Mosaic variants (MVs) reflect mutagenic processes during embryonic development and environmental exposure, accumulate with aging and underlie diseases such as cancer and autism. The detection of noncancer MVs has been computationally challenging due to the sparse representation of nonclonally expanded MVs. Here we present DeepMosaic, combining an image-based visualization module for single nucleotide MVs and a convolutional neural network-based classification module for control-independent MV detection. DeepMosaic was trained on 180,000 simulated or experimentally assessed MVs, and was benchmarked on 619,740 simulated MVs and 530 independent biologically tested MVs from 16 genomes and 181 exomes. DeepMosaic achieved higher accuracy compared with existing methods on biological data, with a sensitivity of 0.78, specificity of 0.83 and positive predictive value of 0.96 on noncancer whole-genome sequencing data, as well as doubling the validation rate over previous best-practice methods on noncancer whole-exome sequencing data (0.43 versus 0.18). DeepMosaic represents an accurate MV classifier for noncancer samples that can be implemented as an alternative or complement to existing methods.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。