Molecular imaging of the brain-heart axis provides insights into cardiac dysfunction after cerebral ischemia

脑-心轴的分子成像技术为了解脑缺血后的心脏功能障碍提供了新的视角

阅读:3
作者:Nele Hermanns ,Viola Wroblewski ,Pablo Bascuñana ,Bettina Wolf ,Andras Polyak ,Tobias L Ross ,Frank M Bengel ,James T Thackeray

Abstract

Ischemic stroke imparts elevated risk of heart failure though the underlying mechanisms remain poorly described. We aimed to characterize the influence of cerebral ischemic injury on cardiac function using multimodality molecular imaging to investigate brain and cardiac morphology and tissue inflammation in two mouse models of variable stroke severity. Transient middle cerebral artery occlusion (MCAo) generated extensive stroke damage (56.31 ± 40.39 mm3). Positron emission tomography imaging of inflammation targeting the mitochondrial translocator protein (TSPO) revealed localized neuroinflammation at 7 days after stroke compared to sham (3.8 ± 0.8 vs 2.6 ± 0.7 %ID/g max, p < 0.001). By contrast, parenchyma topical application of vasoconstrictor endothelin-1 did not generate significant stroke damage or neuroinflammatory cell activity. MCAo evoked a modest reduction in left ventricle ejection fraction at both 1 weeks and 3 weeks after stroke (LVEF at 3 weeks: 54.3 ± 5.7 vs 66.1 ± 3.5%, p < 0.001). This contractile impairment was paralleled by elevated cardiac TSPO PET signal compared to sham (8.6 ± 2.4 vs 5.8 ± 0.7%ID/g, p = 0.022), but was independent of leukocyte infiltration defined by flow cytometry. Stroke size correlated with severity of cardiac dysfunction (r = 0.590, p = 0.008). Statistical parametric mapping identified a direct association between neuroinflammation at 7 days in a cluster of voxels including the insular cortex and reduced ejection fraction (ρ = - 0.396, p = 0.027). Suppression of microglia led to lower TSPO signal at 7 days which correlated with spared late cardiac function after MCAo (r = - 0.759, p = 0.029). Regional neuroinflammation early after cerebral ischemia influences subsequent cardiac dysfunction. Total body TSPO PET enables monitoring of neuroinflammation, providing insights into brain-heart inter-organ communication and may guide therapeutic intervention to spare cardiac function post-stroke.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。