A lentiviral toolkit to monitor airway epithelial cell differentiation using bioluminescence

利用生物发光监测气道上皮细胞分化的慢病毒工具包

阅读:5
作者:Jessica C Orr, Asma Laali, Pascal F Durrenberger, Kyren A Lazarus, Marie-Belle El Mdawar, Sam M Janes, Robert E Hynds

Abstract

Basal cells are adult stem cells in the airway epithelium and regenerate differentiated cell populations, including the mucosecretory and ciliated cells that enact mucociliary clearance. Human basal cells can proliferate and produce differentiated epithelium in vitro. However, studies of airway epithelial differentiation mostly rely on immunohistochemical or immunofluorescence-based staining approaches, meaning that a dynamic approach is lacking, and quantitative data are limited. Here, we use a lentiviral reporter gene approach to transduce primary human basal cells with bioluminescence reporter constructs to monitor airway epithelial differentiation longitudinally. We generated three constructs driven by promoter sequences from the TP63, MUC5AC, and FOXJ1 genes to quantitatively assess basal cell, mucosecretory cell, and ciliated cell abundance, respectively. We validated these constructs by tracking differentiation of basal cells in air-liquid interface and organoid ("bronchosphere") cultures. Transduced cells also responded appropriately to stimulation with interleukin 13 (IL-13; to increase mucosecretory differentiation and mucus production) and IL-6 (to increase ciliated cell differentiation). These constructs represent a new tool for monitoring airway epithelial cell differentiation in primary epithelial and/or induced pluripotent stem cell (iPSC)-derived cell cultures.NEW & NOTEWORTHY Orr et al. generated and validated new lentiviral vectors to monitor the differentiation of airway basal cells, goblet cells, or multiciliated cells using bioluminescence.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。