Identifying transcriptional programs underlying cancer drug response with TraCe-seq

使用 TraCe-seq 识别癌症药物反应背后的转录程序

阅读:14
作者:Matthew T Chang, Frances Shanahan, Thi Thu Thao Nguyen, Steven T Staben, Lewis Gazzard, Sayumi Yamazoe, Ingrid E Wertz, Robert Piskol, Yeqing Angela Yang, Zora Modrusan, Benjamin Haley, Marie Evangelista, Shiva Malek, Scott A Foster, Xin Ye

Abstract

Genetic and non-genetic heterogeneity within cancer cell populations represent major challenges to anticancer therapies. We currently lack robust methods to determine how preexisting and adaptive features affect cellular responses to therapies. Here, by conducting clonal fitness mapping and transcriptional characterization using expressed barcodes and single-cell RNA sequencing (scRNA-seq), we have developed tracking differential clonal response by scRNA-seq (TraCe-seq). TraCe-seq is a method that captures at clonal resolution the origin, fate and differential early adaptive transcriptional programs of cells in a complex population in response to distinct treatments. We used TraCe-seq to benchmark how next-generation dual epidermal growth factor receptor (EGFR) inhibitor-degraders compare to standard EGFR kinase inhibitors in EGFR-mutant lung cancer cells. We identified a loss of antigrowth activity associated with targeted degradation of EGFR protein and an essential role of the endoplasmic reticulum (ER) protein processing pathway in anti-EGFR therapeutic efficacy. Our results suggest that targeted degradation is not always superior to enzymatic inhibition and establish TraCe-seq as an approach to study how preexisting transcriptional programs affect treatment responses.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。