Protein Kinase CK2 Controls the Fate between Th17 Cell and Regulatory T Cell Differentiation

蛋白激酶 CK2 控制 Th17 细胞与调节性 T 细胞分化之间的命运

阅读:10
作者:Sara A Gibson, Wei Yang, Zhaoqi Yan, Yudong Liu, Amber L Rowse, Amy S Weinmann, Hongwei Qin, Etty N Benveniste

Abstract

CK2 is a highly conserved and pleiotropic serine/threonine kinase that promotes many prosurvival and proinflammatory signaling pathways, including PI3K/Akt/mTOR and JAK/STAT. These pathways are essential for CD4+ T cell activation and polarization, but little is known about how CK2 functions in T cells. In this article, we demonstrate that CK2 expression and kinase activity are induced upon CD4+ T cell activation. Targeting the catalytic activity of CK2 using the next-generation small molecule inhibitor CX-4945 in vitro significantly and specifically inhibited mouse and human Th17 cell differentiation while promoting the generation of Foxp3+ regulatory T cells (Tregs). These findings were associated with suppression of PI3K/Akt/mTOR activation and STAT3 phosphorylation upon CX-4945 treatment. Furthermore, we demonstrate that CX-4945 treatment inhibits the maturation of Th17 cells into inflammatory IFN-γ-coproducing effector cells. The Th17/Treg axis and maturation of Th17 cells are major contributing factors to the pathogenesis of many autoimmune disorders, including multiple sclerosis. Using a murine model of multiple sclerosis, experimental autoimmune encephalomyelitis, we demonstrate that in vivo administration of CX-4945 targets Akt/mTOR signaling in CD4+ T cells and the Th17/Treg axis throughout disease. Importantly, CX-4945 treatment after disease initiation significantly reduced disease severity, which was associated with a significant decrease in the frequency of pathogenic IFN-γ+ and GM-CSF+ Th17 cells in the CNS. Our data implicate CK2 as a regulator of the Th17/Treg axis and Th17 cell maturation and suggest that CK2 could be targeted for the treatment of Th17 cell-driven autoimmune disorders.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。