Rational engineering of a minimized immune inhibitor with unique triple-targeting properties

合理设计具有独特三重靶向特性的最小化免疫抑制剂

阅读:7
作者:Christoph Q Schmidt, Hongjun Bai, Zhuoer Lin, Antonio M Risitano, Paul N Barlow, Daniel Ricklin, John D Lambris

Abstract

Inadequate control of the complement system is the underlying or aggravating factor in many human diseases. Whereas treatment options that specifically target the alternative pathway (AP) of complement activation are considered highly desirable, no such option is available in the clinic. In this study, we present a successful example of protein engineering, guided by structural insight on the complement regulator factor H (FH), yielding a novel complement-targeted therapeutic (mini-FH) with clinical potential. Despite a 70% reduction in size, mini-FH retained and in some respects exceeded the regulatory activity and cell surface-recognition properties of its parent protein FH, including the recently described recognition of sites of oxidative stress. Importantly, the chosen design extended the functional spectrum of the inhibitor, as mini-FH showed increased binding to the surface-bound opsonins iC3b and C3dg when compared with FH. Thus, mini-FH is equipped with a unique and clinically valuable triple-targeting profile toward diseased host cells, through its binding to sites of ongoing complement activation, markers of oxidative damage, and host surface-specific polyanions. When assessed in a clinically relevant AP-mediated disease model of paroxysmal nocturnal hemoglobinuria, mini-FH largely outperformed FH and indicated advantages over clinically evaluated AP inhibitors. Thus, the rational engineering of a streamlined FH construct not only provided insight into the function of a key complement regulator, but also yielded a novel inhibitor that combines a triple-targeting approach with high AP-specific inhibitory activity (IC50 ~ 40 nM), which may pave the way toward new options for the treatment of complement-mediated diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。