Biological Activity In Vitro, Absorption, BBB Penetration, and Tolerability of Nanoformulation of BT44:RET Agonist with Disease-Modifying Potential for the Treatment of Neurodegeneration

BT44:RET 激动剂纳米制剂的体外生物活性、吸收、血脑屏障渗透性和耐受性,具有治疗神经退行性疾病的疾病改良潜力

阅读:5
作者:Malik Salman Haider, Arun Kumar Mahato, Anastasiia Kotliarova, Stefan Forster, Bettina Böttcher, Philipp Stahlhut, Yulia Sidorova, Robert Luxenhofer

Abstract

BT44 is a novel, second-generation glial cell line-derived neurotropic factor mimetic with improved biological activity and is a lead compound for the treatment of neurodegenerative disorders. Like many other small molecules, it suffers from intrinsic poor aqueous solubility, posing significant hurdles at various levels for its preclinical development and clinical translation. Herein, we report a poly(2-oxazoline)s (POx)-based BT44 micellar nanoformulation with an ultrahigh drug-loading capacity of 47 wt %. The BT44 nanoformulation was comprehensively characterized by 1H NMR spectroscopy, differential scanning calorimetry (DSC), powder X-ray diffraction (XRD), dynamic light scattering (DLS), and cryo-transmission/scanning electron microscopy (cryo-TEM/SEM). The DSC, XRD, and redispersion studies collectively confirmed that the BT44 formulation can be stored as a lyophilized powder and can be redispersed upon need. The DLS suggested that the redispersed formulation is suitable for parenteral administration (Dh ≈ 70 nm). The cryo-TEM measurements showed the presence of wormlike structures in both the plain polymer and the BT44 formulation. The BT44 formulation retained biological activity in immortalized cells and in cultured dopamine neurons. The micellar nanoformulation of BT44 exhibited improved absorption (after subcutaneous injection) and blood-brain barrier (BBB) penetration, and no acute toxic effects in mice were observed. In conclusion, herein, we have developed an ultrahigh BT44-loaded aqueous injectable nanoformulation, which can be used to pave the way for its preclinical and clinical development for the management of neurodegenerative disorders.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。