Krüppel-like factor 8 promotes tumorigenic mammary stem cell induction by targeting miR-146a

Krüppel 样因子 8 通过靶向 miR-146a 促进致瘤性乳腺干细胞诱导

阅读:7
作者:Xianhui Wang, Heng Lu, Tianshu Li, Lin Yu, Gang Liu, Xu Peng, Jihe Zhao

Abstract

The properties of stem cells can be induced during the epithelial to mesenchymal transition (EMT). The responsible molecular mechanisms, however, remain largely undefined. Here we report the identification of the microRNA-146a (miR-146a) as a common target of Krüppel-like factor 8 (KLF8) and TGF-β, both of which are known EMT-inducers. Upon KLF8 overexpression or TGF-β treatment, a significant portion of the MCF-10A cells gained stem cell traits as demonstrated by an increased expression of CD44(high)/CD24low, activity of aldehyde dehydrogenase (ALDH), mammosphere formation and chemoresistance. Along with this change, the expression of miR-146a was highly upregulated in the cells. Importantly, we found that miR-146a was aberrantly co-overexpressed with KLF8 in a panel of invasive human breast cancer cell lines. Ectopic expression of KLF8 failed to induce the stem cell traits in the MCF-10A cells if the cells were pre-treated with miR-146a inhibitor, whereas overexpression of miR-146a in the MCF-10A cells alone was sufficient to induce the stem cell traits. Co-staining and luciferase reporter analyses indicated that miR-146a targets the 3'-UTR of the Notch signaling inhibitor NUMB for translational inhibition. Overexpression of KLF8 dramatically potentiated the tumorigenecity of MCF-10A cells expressing the H-Ras oncogene, which was accompanied by a loss of NUMB expression in the tumors. Taken together, this study identifies a novel role and mechanism for KLF8 in inducing pro-tumorigenic mammary stem cells via miR-146a potentially by activating Notch signaling. This mechanism could be exploited as a therapeutic target against drug resistance of breast cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。