Insulin receptor responsiveness governs TGFβ-induced hepatic stellate cell activation: Insulin resistance instigates liver fibrosis

胰岛素受体反应性控制 TGFβ 诱导的肝星状细胞活化:胰岛素抵抗引发肝纤维化

阅读:22
作者:Wang-Hsin Lee, Evelyn A Bates, Zachary A Kipp, Sally N Pauss, Genesee J Martinez, Cheavar A Blair, Terry D Hinds Jr

Abstract

The insulin receptor (INSR) has been shown to be hyperactive in hepatic stellate cells (HSCs) in humans and rodents with liver fibrosis. To explore HSC cellular mechanisms that INSR regulates during pro-fibrotic stimulation, we used CRISPR-Cas9 technology. We knocked out a portion of the INSR gene in human LX2 HSC cells (INSRe5-8 KO) that regulates insulin responsiveness but not the insulin-like growth factor (IGF) or transforming growth factor-β (TGFβ) signaling. The INSRe5-8 KO HSCs had significantly higher cell growth, BrdU incorporation, and lower TP53 expression that suppresses growth, and they also exhibited increased migration compared to the Scramble control. We treated the scramble control and INSRe5-8 KO HSCs with insulin or TGFβ and profiled hundreds of kinase activities using the PamGene PamStation kinome technology. Our analysis showed that serine/threonine kinase (STK) activities were reduced, and most of the protein-tyrosine kinase (PTK) activities were increased in the INSRe5-8 KO compared to the Scramble control HSCs. To study gene transcripts altered in activated Scramble control and INSRe5-8 KO HSCs, we treated them with TGFβ for 24 h. We isolated RNA for sequencing and found that the INSRe5-8 KO cells, compared to control HSCs, had altered transcriptional responsiveness to TGFβ stimulation, collagen-activated signaling, smooth muscle cell differentiation pathways, SMAD protein signaling, collagen metabolic process, integrin-mediated cell adhesion, and notch signaling. This study demonstrates that reduced INSR responsiveness enhances HSC growth and selectively mediates TGFβ-induced HSC activation. These findings provide new insights into the development of more effective treatments for liver fibrosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。