Uncovering the role of FXYD3 as a potential oncogene and early biomarker in pancreatic cancer

揭示 FXYD3 作为胰腺癌潜在致癌基因和早期生物标志物的作用

阅读:6
作者:Ke Xin Yee, Yu-Cheng Lee, Hieu Duc Nguyen, Ming-Yao Chen, Yi-Chun Ni, Yung-Fu Wu, Kuen-Haur Lee

Abstract

Pancreatic cancer is an aggressive cancer with silent symptoms and high mortality with less than 11% of the 5-year survival rate. Until now, the significance of genes as clinical biomarkers in the early stages of pancreatic cancer has not been fully understood. Hence, this study aims to reveal the significant genes in the early stages of pancreatic cancer using bioinformatic analysis and in vitro experiments, and to serve as clinical biomarkers for early detection. We used Cancer RNA-Seq Nexus database and identified one tumor suppressor gene (NAGK), and five oncogenes (FXYD3, ACTR1A, B3GNT3, SIGIRR, and EXOC1) that are significant in the early stages of pancreatic cancer. The expression of NAGK, FXYD3, ACTR1A, B3GNT3, SIGIRR, and EXOC1 were determined from the GEPIA, UALCAN, and HPA database. It has been shown that pancreatic cancer tumor dissemination is an event that can occur in early lesions, rather than being solely restricted in the developed primary tumor. Thus, the six hub genes that were differentially expressed between stage I and stage II of primary pancreatic cancer tumors were compared to metastasis-related genes (1938 genes) in the human cancer metastasis database (HCMDB), yielding two overlapped genes (B3GNT3 and FXYD3). To establish the expression correlation between these two specific genes with metastatic characteristics of the early stage of pancreatic cancer and migratory ability in pancreatic cancer cell lines, the expression patterns of B3GNT3 and FXYD3 were examined in four different migratory abilities of pancreatic cancer cell lines, including HPAC, BxPC-3, AsPC-1, and PANC-1, as well as the normal pancreatic duct epithelial cell line HPDE6-C7. The results displayed that the expression of the FXYD3 gene was dramatically increased with the migratory ability enhanced of four pancreatic cancer cell lines. Thus, in the follow-up study, we will demonstrate the functional role of FXYD3 in pancreatic cancer tumorigenesis. This study revealed that the FXYD3 may act as a significant oncogene in the early stage of pancreatic cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。