The role of GPR39 zinc receptor in the modulation of glutamatergic and GABAergic transmission

GPR39 锌受体在调节谷氨酸能和 GABA 能传递中的作用

阅读:7
作者:Gabriela Starowicz, Dominika Siodłak, Gabriel Nowak, Katarzyna Mlyniec

Background

Despite our poor understanding of the pathophysiology of depression, a growing body of evidence indicates the role of both glutamate and gamma-aminobutyric acid (GABA) signaling behind the effects of rapid-acting antidepressants (RAADs). GPR39 is a zinc-sensing receptor whose activation leads to a prolonged antidepressant-like response in mice. Both GPR39 and zinc can modulate glutamatergic and GABAergic neurotransmission, however, exact molecular mechanisms are still elusive. In this study, we aimed to research the role of glutamatergic and GABAergic system activation in TC-G 1008 antidepressant-like effects and the disruptions in this effect caused by a low-zinc diet.

Conclusions

Our findings indicate the important role of glutamate/GABA signaling in the antidepressant-like effect of TC-G 1008 and imply that GPR39 regulates the balance between excitatory and inhibitory activity in the brain. Thus, we suggest the zinc-sensing receptor be considered an interesting new target for the development of novel antidepressants.

Methods

In the first part of our study, we investigated the role of joint administration of the GPR39 agonist (TC-G 1008) and ligands of the glutamatergic or GABAergic systems, in antidepressant-like response. To evaluate animal behaviour we used the forced swim test in mice. In the second part of the study, we assessed the effectiveness of TC-G 1008-induced antidepressant-like response in conditions of decreased dietary zinc intake and its molecular underpinning by conducting a Western Blot analysis of selected proteins involved in glutamatergic and GABAergic neurotransmission.

Results

The TC-G 1008-induced effect was blocked by the administration of NMDA or picrotoxin. The joint administration of TC-G 1008 along with muscimol or SCH50911 showed a trend toward decreased immobility time. Zinc-deficient diet resulted in dysregulation of GluN1, PSD95, and KCC2 protein expression. Conclusions: Our findings indicate the important role of glutamate/GABA signaling in the antidepressant-like effect of TC-G 1008 and imply that GPR39 regulates the balance between excitatory and inhibitory activity in the brain. Thus, we suggest the zinc-sensing receptor be considered an interesting new target for the development of novel antidepressants.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。