Foxp3+-inducible regulatory T cells suppress endothelial activation and leukocyte recruitment

Foxp3+ 诱导的调节性 T 细胞抑制内皮细胞活化和白细胞募集

阅读:7
作者:Elena Maganto-García, De-Xiu Bu, Margarite L Tarrio, Pilar Alcaide, Gail Newton, Gabriel K Griffin, Kevin J Croce, Francis W Luscinskas, Andrew H Lichtman, Nir Grabie

Abstract

The ability of regulatory T cells (Treg) to traffic to sites of inflammation supports their role in controlling immune responses. This feature supports the idea that adoptive transfer of in vitro expanded human Treg could be used for treatment of immune/inflammatory diseases. However, the migratory behavior of Treg, as well as their direct influence at the site of inflammation, remains poorly understood. To explore the possibility that Treg may have direct anti-inflammatory influences on tissues, independent of their well-established suppressive effects on lymphocytes, we studied the adhesive interactions between mouse Treg and endothelial cells, as well as their influence on endothelial function during acute inflammation. We show that Foxp3(+) adaptive/inducible Treg (iTreg), but not naturally occurring Treg, efficiently interact with endothelial selectins and transmigrate through endothelial monolayers in vitro. In response to activation by endothelial Ag presentation or immobilized anti-CD3ε, Foxp3(+) iTreg suppressed TNF-α- and IL-1β-mediated endothelial selectin expression and adhesiveness to effector T cells. This suppression was contact independent, rapid acting, and mediated by TGF-β-induced activin receptor-like kinase 5 signaling in endothelial cells. In addition, Foxp3(+) iTreg adhered to inflamed endothelium in vivo, and their secretion products blocked acute inflammation in a model of peritonitis. These data support the concept that Foxp3(+) iTreg help to regulate inflammation independently of their influence on effector T cells by direct suppression of endothelial activation and leukocyte recruitment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。