Trans-Species Fecal Transplant Revealed the Role of the Gut Microbiome as a Contributor to Energy Metabolism and Development of Skeletal Muscle

跨物种粪便移植揭示了肠道微生物群对能量代谢和骨骼肌发育的作用

阅读:5
作者:Liyuan Cai, Min Li, Shuyi Zhou, Xiaoyan Zhu, Xianghua Zhang, Qingbiao Xu

Abstract

The aim of this study was to investigate the influence of the exogenous gut microbiome at early life stages on the development of mice skeletal muscle in adulthood. First, the characteristics of skeletal muscle and the gut microbiota composition of the gut microbiota donors—Erhualian (EH) pigs (a native Chinese breed)—were studied. EH pigs had significantly higher fiber densities and thinner fiber diameters than Duroc × Landrace × Yorkshire crossed (DLY) pigs (p < 0.05). The expression levels of genes related to oxidized muscle fibers, mitochondrial function, and glucose metabolism in the skeletal muscle of EH pigs were significantly higher than those in DLY pigs (p < 0.05). Moreover, the abundances of 8 gut microbial phyla and 35 genera correlated with the skeletal muscle fiber diameters and densities exhibited significant differences (p < 0.05) between EH and DLY pigs. Subsequently, newborn mice were treated with saline (CG) and fecal microbiota suspensions collected from EH pigs (AG), respectively, for 15 days, starting from the day of birth. In adulthood (60 days), the relative abundances of Parabacteroides, Sutterella, and Dehalobacterium were significantly higher in the feces of the AG mice than those of the CG mice. The microbes contribute to improved functions related to lipid and carbohydrate metabolism. The weight, density, and gene expression related to the oxidized muscle fibers, mitochondrial function, and glucose metabolism of the AG group were significantly higher than those of the CG group (p < 0.05), whereas the fiber diameters in the skeletal muscle of the AG mice were significantly lower (p < 0.05) than those of the CG mice. These results suggested that intervention with exogenous microbiota at early stages of life can affect the fiber size and energy metabolism of their skeletal muscle.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。