Discovery of a highly selective CYP3A4 inhibitor suitable for reaction phenotyping studies and differentiation of CYP3A4 and CYP3A5

发现一种高度选择性的 CYP3A4 抑制剂,适用于反应表型研究和 CYP3A4 和 CYP3A5 的分化

阅读:9
作者:Xiaohai Li, Xinyi Song, Theodore M Kamenecka, Michael D Cameron

Abstract

Current molecular tools lack the ability to differentiate the activity of CYP3A4 and CYP3A5 in biological samples such as human liver microsomes. Kinetic experiments and the CYP3A4 crystal structure indicate that the active sites of both enzymes are large and flexible, and have more than one binding subsite within the active site. 1-(4-Imidazopyridinyl-7phenyl)-3-(4'-cyanobiphenyl) urea (SR-9186) was optimized through several rounds of structural refinement from an initial screening hit to obtain greater than 1000-fold selectivity for the inhibition of CYP3A4 versus CYP3A5. Characterization data demonstrate selectivity using midazolam and testosterone hydroxylation assays with recombinant cytochrome P450, pooled human liver microsomes, and individually genotyped microsomes. Clear differences are seen between individuals with CYP3A5*1 and *3 genotypes. The antifungal drug ketoconazole is the most commonly used CYP3A inhibitor for in vitro and in vivo studies. A direct comparison of SR-9186 and ketoconazole under typical assay conditions used in reaction phenotyping studies demonstrated that SR-9186 had selectivity over CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A5 greater than or equal to that of ketoconazole. In addition, the long half-life (106 min) of SR-9186 in incubations containing 1 mg/ml human liver microsomes provided sustained CYP3A4 inhibition.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。