EP4 receptor regulates collagen type-I, MMP-1, and MMP-3 gene expression in human tendon fibroblasts in response to IL-1 beta treatment

EP4 受体在 IL-1β 治疗后调节人类肌腱成纤维细胞中的 I 型胶原蛋白、MMP-1 和 MMP-3 基因表达

阅读:9
作者:Bhavani P Thampatty, Hongxia Li, Hee-Jeong Im, James H-C Wang

Abstract

Tendinopathy is accompanied by inflammation, tendon matrix degradation, or both. Inflammatory cytokine IL-1beta, which is a potent inflammatory mediator, is likely present within the tendon. The purpose of this study was to determine the biological impact of IL-1beta on tendon fibroblasts by assessing the expression of cPLA(2), COX-2, PGE(2) and its receptors (EPs), collagen type-I, and MMPs. We also studied the role of the p38 MAPK pathway in IL-1beta-induced catabolic effects. We found that IL-1beta increased the expression levels of cPLA(2) and COX-2, and also increased the secretion of PGE(2). Induction of MMPs, such as MMP-1 and MMP-3 at the mRNA level, was also observed after stimulation with IL-1beta. Furthermore, the presence of IL-1beta significantly decreased the level of collagen type-I mRNA in tendon fibroblasts. These effects were found to be mediated by selective upregulation of EP(4) receptor, which is a member of G-protein-coupled receptor that transduces the PGE(2) signal. Blocking EP(4) receptor by a specific chemical inhibitor abolished IL-1beta-induced catabolic effects. These results suggest that IL-1beta-induced catabolic action on tendon fibroblasts occurs via the upregulation of two key inflammatory mediators, cPLA(2) and COX-2, which are responsible for the synthesis of PGE(2). IL-1beta further stimulates the expression of EP(4) receptor, suggesting positive feedback regulation which may lead to accelerated catabolic processes in tendon fibroblasts. Studies using pathway-specific chemical inhibitors suggest that the p38 MAPK pathway is the key signaling cascade transducing IL-1beta-mediated catabolic effects. Collectively, our findings suggest that the EP(4) receptor mediates the IL-1beta-induced catabolic metabolism via the p38 MAPK pathway in human tendon fibroblasts and may play a major role in the tendon's degenerative changes often seen in the later stages of tendinopathy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。