Genetic polymorphisms affecting susceptibility to mercury neurotoxicity in children: summary findings from the Casa Pia Children's Amalgam clinical trial

影响儿童对汞神经毒性敏感性的基因多态性:Casa Pia 儿童汞合金临床试验的总结结果

阅读:5
作者:James S Woods, Nicholas J Heyer, Joan E Russo, Michael D Martin, Federico M Farin

Abstract

Mercury (Hg) is neurotoxic, and children may be particularly susceptible to this effect. A current major challenge is identification of children who may be uniquely susceptible to Hg toxicity because of genetic predisposition. We examined the possibility that common genetic variants that are known to affect neurologic functions or Hg handling in adults would modify the adverse neurobehavioral effects of Hg exposure in children. Three hundred thirty subjects who participated as children in the recently completed Casa Pia Clinical Trial of Dental Amalgams in Children were genotyped for 27 variants of 13 genes that are reported to affect neurologic functions and/or Hg disposition in adults. Urinary Hg concentrations, reflecting Hg exposure from any source, served as the Hg exposure index. Regression modeling strategies were employed to evaluate potential associations between allelic status for individual genes or combinations of genes, Hg exposure, and neurobehavioral test outcomes assessed at baseline and for 7 subsequent years during the clinical trial. Among boys, significant modification of Hg effects on neurobehavioral outcomes over a broad range of neurologic domains was observed with variant genotypes for 4 of 13 genes evaluated. Modification of Hg effects on a more limited number of neurobehavioral outcomes was also observed for variants of another 8 genes. Cluster analyses suggested some genes interacting in common processes to affect Hg neurotoxicity. In contrast, significant modification of Hg effects on neurobehavioral functions among girls with the same genotypes was substantially more limited. These observations suggest increased susceptibility to the adverse neurobehavioral effects of Hg among children, particularly boys, with genetic variants that are relatively common to the general human population. These findings advance public health goals to identify factors underlying susceptibility to Hg toxicity and may contribute to strategies for preventing adverse health risks associated with Hg exposure.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。