Multimodally profiling memory T cells from a tuberculosis cohort identifies cell state associations with demographics, environment and disease

通过多模态分析结核病患者群体中的记忆 T 细胞,可以确定细胞状态与人口统计、环境和疾病之间的关联

阅读:9
作者:Aparna Nathan, Jessica I Beynor, Yuriy Baglaenko, Sara Suliman, Kazuyoshi Ishigaki, Samira Asgari, Chuan-Chin Huang, Yang Luo, Zibiao Zhang, Kattya Lopez, Cecilia S Lindestam Arlehamn, Joel D Ernst, Judith Jimenez, Roger I Calderón, Leonid Lecca, Ildiko Van Rhijn, D Branch Moody, Megan B Murray, Sou

Abstract

Multimodal T cell profiling can enable more precise characterization of elusive cell states underlying disease. Here, we integrated single-cell RNA and surface protein data from 500,089 memory T cells to define 31 cell states from 259 individuals in a Peruvian tuberculosis (TB) progression cohort. At immune steady state >4 years after infection and disease resolution, we found that, after accounting for significant effects of age, sex, season and genetic ancestry on T cell composition, a polyfunctional type 17 helper T (TH17) cell-like effector state was reduced in abundance and function in individuals who previously progressed from Mycobacterium tuberculosis (M.tb) infection to active TB disease. These cells are capable of responding to M.tb peptides. Deconvoluting this state-uniquely identifiable with multimodal analysis-from public data demonstrated that its depletion may precede and persist beyond active disease. Our study demonstrates the power of integrative multimodal single-cell profiling to define cell states relevant to disease and other traits.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。