Mutational evidence for a structural model of the Lassa virus RNA polymerase domain and identification of two residues, Gly1394 and Asp1395, that are critical for transcription but not replication of the genome

拉沙病毒 RNA 聚合酶结构域结构模型的突变证据以及对基因组转录但不复制至关重要的两个残基 Gly1394 和 Asp1395 的鉴定

阅读:8
作者:Meike Hass, Michaela Lelke, Carola Busch, Beate Becker-Ziaja, Stephan Günther

Abstract

The RNA-dependent RNA polymerase (RdRp) of arenaviruses is an integral part of the L protein, a 200-kDa multifunctional and multidomain protein. In view of the paucity of structural data, we recently proposed a model for the RdRp domain of arenaviruses based on the folding of RdRps of plus-strand viruses (S. Vieth et al., Virology 318:153-168, 2004). In the present study, we have chosen a large-scale mutagenesis approach to gain insight into the structure and function of the Lassa virus RdRp domain. A total of 180 different mutants of the domain were generated by using a novel PCR-based mutagenesis technique and tested in the context of the Lassa virus replicon system. Nearly all residues, which were essential for function, clustered in the center of the three-dimensional model including the catalytic site, while residues that were less important for function mapped to the periphery of the model. The combined bioinformatics and mutagenesis data allowed deducing candidate residues for ligand interaction. Mutation of two adjacent residues in the putative palm-thumb subdomain junction, G1394 and D1395 (strain AV), led to a defect in mRNA synthesis but did not affect antigenomic RNA synthesis. In conclusion, the data provide circumstantial evidence for the existence of an RdRp domain between residues 1040 and 1540 of the Lassa virus L protein and the folding model of the domain. A functional element within the RdRp was identified, which is important for transcription but not replication of the genome.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。