Integrating an aerosolized drug delivery device with conventional static cultures and a dynamic airway barrier microphysiological system

将雾化药物输送装置与传统静态培养和动态气道屏障微生理系统相结合

阅读:18
作者:Nikita Karra, Joao Fernandes, Emily Jane Swindle, Hywel Morgan

Abstract

Organ on a chip or microphysiological systems (MPSs) aim to resolve current challenges surrounding drug discovery and development resulting from an unrepresentative static cell culture or animal models that are traditionally used by generating a more physiologically relevant environment. Many different airway MPSs have been developed that mimic alveolar or bronchial interfaces, but few methods for aerosol drug delivery at the air-liquid interface exist. This work demonstrates a compact Surface Acoustic Wave (SAW) drug delivery device that generates an aerosol of respirable size for delivery of compounds directly onto polarized or differentiated epithelial cell cultures within an airway barrier MPS and conventional static inserts. As proof of principle, the SAW drug delivery device was used to nebulize viral dsRNA analog poly I:C and steroids fluticasone and dexamethasone without disrupting their biological function.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。