Low-Intensity Focused Ultrasound-Responsive Ferrite-Encapsulated Nanoparticles for Atherosclerotic Plaque Neovascularization Theranostics

低强度聚焦超声响应铁氧体包覆纳米粒子用于动脉粥样硬化斑块新生血管治疗诊断

阅读:5
作者:Jianting Yao, Zhuowen Yang, Liandi Huang, Chao Yang, Jianxin Wang, Yang Cao, Lan Hao, Liang Zhang, Jingqi Zhang, Pan Li, Zhigang Wang, Yang Sun, Haitao Ran

Abstract

Pathological angiogenesis is a crucial factor that causes atherosclerotic plaque rupture. Sinoporphyrin sodium-mediated sonodynamic therapy (DVDMS-SDT) induces regression of plaque neovascularization in humans without causing obvious side effects. However, a clinical noninvasive theranostic strategy for atherosclerotic plaque neovascularization is urgently needed. A nanoplatform designed for multimodality imaging-guided SDT in plaque angiogenesis theranostics, termed PFP-HMME@PLGA/MnFe2 O4 -ramucirumab nanoparticles (PHPMR NPs), is fabricated. It encapsulates manganese ferrite (MnFe2 O4 ), hematoporphyrin monomethyl ether (HMME), and perfluoropentane (PFP) stabilized by polylactic acid-glycolic acid (PLGA) shells and is conjugated to an anti-VEGFR-2 antibody. With excellent magnetic resonance imaging (MRI)/photoacoustic/ultrasound imaging ability, the distribution of PHPMR NPs in plaque can be observed in real time. Additionally, they actively accumulate in the mitochondria of rabbit aortic endothelial cells (RAECs), and the PHPMR NP-mediated SDT promotes mitochondrial-caspase apoptosis via the production of reactive oxygen species and inhibits the proliferation, migration, and tubulogenesis of RAECs. On day 3, PHPMR NP-mediated SDT induces apoptosis in neovessel endothelial cells and improves hypoxia in the rabbit advanced plaque. On day 28, PHPMR NP-mediated SDT reduces the density of neovessels, subsequently inhibiting intraplaque hemorrhage and inflammation and eventually stabilizing the plaque. Collectively, PHPMR NP-mediated SDT presents a safe and effective theranostic strategy for inhibiting plaque angiogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。