Matrine promotes NT3 expression in CNS cells in experimental autoimmune encephalomyelitis

苦参碱促进实验性自身免疫性脑脊髓炎中枢神经系统细胞NT3表达

阅读:4
作者:Ming-Liang Zhang, Xiao-Jian Zhang, Jian Kang, Hui-Jun Zhang, Xiao-Long Chen, Nan Liu, Shu-Qing Liu, Wen-Di Ma, Guang-Xian Zhang, Lin Zhu

Abstract

Neurotrophin 3 (NT3) is a potent neurotrophic factor for promoting remyelination and recovery of neuronal function; upregulation of its expression in the central nervous system (CNS) is thus of major therapeutic importance for neurological deficits. Matrine (MAT), a quinolizidine alkaloid derived from the herb Radix Sophorae Flavescent, has been recently reported to effectively ameliorate clinical signs in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS), by secreting antiinflammatory cytokines. In the present study, our goal was to investigate whether MAT could affect NT3 expression of glial cells in the CNS, the major cell populations in the CNS foci of MS/EAE. We found that MAT markedly upregulated NT3 expression in the CNS not only by microglia/macrophages and astrocytes, but also by oligodendrocyte precursor cells, indicative of both paracrine and autocrine effects on myelinating cells. While MAT treatment reduced the numbers of iNOS+ M1, but increased Arg1+ M2 microglia/macrophage phenotypes, NT3 expression was upregulated in both phenotypes. These results indicate that MAT therapy for EAE acts, at least in part, by stimulating local production of NT3 by glial cells in the CNS, which protects neural cells from CNS inflammation-induced tissue damage.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。