A streptococcal Fic domain-containing protein disrupts blood-brain barrier integrity by activating moesin in endothelial cells

含有链球菌 Fic 结构域的蛋白质通过激活内皮细胞中的膜突蛋白破坏血脑屏障的完整性

阅读:7
作者:Zhe Ma, Jie Peng, Dandan Yu, Joseph S Park, Huixing Lin, Bin Xu, Chengping Lu, Hongjie Fan, Matthew K Waldor

Abstract

Streptococcus equi subsp. zooepidemicus (SEZ) is a zoonotic pathogen capable of causing meningitis in humans. The mechanisms that enable pathogens to traverse the blood-brain barrier (BBB) are incompletely understood. Here, we investigated the role of a newly identified Fic domain-containing protein, BifA, in SEZ virulence. BifA was required for SEZ to cross the BBB and to cause meningitis in mice. BifA also enhanced SEZ translocation across human Brain Microvascular Endothelial Cell (hBMEC) monolayers. Purified BifA or its Fic domain-containing C-terminus alone were able to enter into hBMECs, leading to disruption of monolayer barrier integrity. A SILAC-based proteomic screen revealed that BifA binds moesin. BifA's Fic domain was required for its binding to this regulator of host cell cytoskeletal processes. BifA treatment of hBMECs led to moesin phosphorylation and downstream RhoA activation. Inhibition of moesin activation or moesin depletion in hBMEC monolayers abrogated BifA-mediated increases in barrier permeability and SEZ's capacity to translocate across monolayers. Thus, BifA activation of moesin appears to constitute a key mechanism by which SEZ disrupts endothelial monolayer integrity to penetrate the BBB.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。