Physiological and Transcriptomic Analyses Uncover the Reason for the Inhibition of Photosynthesis by Phosphate Deficiency in Cucumis melo L

生理和转录组分析揭示了黄瓜光合作用因磷酸盐缺乏而受到抑制的原因

阅读:4
作者:Pengli Li, Jing Yu, Ningxiao Feng, Jinyang Weng, Asad Rehman, Jinyang Huang, Song Tu, Qingliang Niu

Abstract

Phosphate (Pi) deficiency is a common phenomenon in agricultural production and limits plant growth. Recent work showed that long-term Pi deficiency caused the inhibition of photosynthesis and inefficient electron transport. However, the underlying mechanisms are still unknown. In this study, we used the physiological, histochemical, and transcriptomic methods to investigate the effect of low-Pi stress on photosynthetic gas exchange parameters, cell membrane lipid, chloroplast ultrastructure, and transcriptional regulation of key genes in melon seedlings. The results showed that Pi deficiency significantly downregulated the expression of aquaporin genes, induced an increase in ABA levels, and reduced the water content and free water content of melon leaves, which caused physiological drought in melon leaves. Therefore, gas exchange was disturbed. Pi deficiency also reduced the phospholipid contents in leaf cell membranes, caused the peroxidation of membrane lipids, and destroyed the ultrastructure of chloroplasts. The transcriptomic analysis showed that 822 differentially expressed genes (DEGs) were upregulated and 1254 downregulated by Pi deficiency in leaves. GO and KEGG enrichment analysis showed that DEGs significantly enriched in chloroplast thylakoid membrane composition (GO:0009535), photosynthesis-antenna proteins (map00196), and photosynthesis pathways (map00195) were downregulated by Pi deficiency. It indicated that Pi deficiency regulated photosynthesis-related genes at the transcriptional level, thereby affecting the histochemical properties and physiological functions, and consequently causing the reduced light assimilation ability and photosynthesis efficiency. It enriches the mechanism of photosynthesis inhibition by Pi deficiency.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。