Hepatic Transport of 25-Hydroxyvitamin D3 Conjugates: A Mechanism of 25-Hydroxyvitamin D3 Delivery to the Intestinal Tract

25-羟基维生素 D3 结合物的肝脏转运:25-羟基维生素 D3 输送至肠道的机制

阅读:5
作者:Chunying Gao, Michael Z Liao, Lyrialle W Han, Kenneth E Thummel, Qingcheng Mao

Abstract

Vitamin D3 is an important prohormone critical for maintaining calcium and phosphate homeostasis in the body and regulating drug-metabolizing enzymes and transporters. 25-Hydroxyvitamin D3 (25OHD3), the most abundant circulating metabolite of vitamin D3, is further transformed to the biologically active metabolite 1α,25-dihydroxyvitamin D3 (1α,25-(OH)2D3) by CYP27B1 in the kidney and extrarenal tissues, and to nonactive metabolites by other cytochrome P450 enzymes. In addition, 25OHD3 undergoes sulfation and glucuronidation in the liver, forming two major conjugative metabolites, 25OHD3-3-O-sulfate (25OHD3-S) and 25OHD3-3-O-glucuronide (25OHD3-G), both of which were detected in human blood and bile. Considering that the conjugates excreted into the bile may be circulated to and reabsorbed from the intestinal lumen, deconjugated to 25OHD3, and then converted to 1α,25-(OH)2D3, exerting local intestinal cellular effects, it is crucial to characterize enterohepatic transport mechanisms of 25OHD3-S and 25OHD3-G, and thereby understand and predict mechanisms of interindividual variability in mineral homeostasis. In the present study, with plasma membrane vesicle and cell-based transport studies, we showed that 25OHD3-G is a substrate of multidrug resistance proteins 2 and 3, OATP1B1, and OATP1B3, and that 25OHD3-S is probably a substrate of breast cancer resistance protein, OATP2B1, and OATP1B3. We also demonstrated sinusoidal and canalicular efflux of both conjugates using sandwich-cultured human hepatocytes. Given substantial expression of these transporters in liver hepatocytes and intestinal enterocytes, this study demonstrates for the first time that transporters could play important roles in the enterohepatic circulation of 25OHD3 conjugates, providing an alternative pathway of 25OHD3 delivery to the intestinal tract, which could be critical for vitamin D receptor-dependent gene regulation in enterocytes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。