A chromosome-scale genome assembly and epigenomic profiling reveal temperature-dependent histone methylation in iridoid biosynthesis regulation in Scrophularia ningpoensis

染色体规模的基因组组装和表观基因组分析揭示了温度依赖性的组蛋白甲基化在玄参环烯醚萜生物合成调控中的作用

阅读:5
作者:Qing Xu, Chang Liu, Bin Li, Kewei Tian, Lei You, Li Xie, Huang Wang, Meide Zhang, Wuxian Zhou, Yonghong Zhang, Chao Zhou

Abstract

Understanding how medicinal plants adapt to global warming, particularly through epigenetic mechanisms that modify phenotypes without changing DNA sequences is crucial. Scrophularia ningpoensis Hemsl., a traditional Chinese Medicine (TCM), produces bioactive compounds that are influenced by environmental temperatures, making it an ideal model for studying the biological basis of TCM geoherbalism. However, the adaptive potential of epigenetic marks in S. ningpoensis under varying temperatures remains understudied, partly due to the absence of a reference genome. Here, it was demonstrated that mild warm temperatures contribute to the metabolic accumulation and the cultivated migration of S. ningpoensis using a global dataset. A high-quality chromosome-level genome was assembled, and an atlas of epigenetic, metabolic, and transcriptomic profiles across different tissues. Transcriptome analysis identified 3401 allele-specific expressed genes (ASEGs) across nine tissues by comparing two haplotypes. ChIP-seq and BS-seq data from leaf and root tissues revealed that ASEGs are associated with distinct epigenetic patterns, particularly the active mark H3K36me3, which functions differently in these tissues. Notably, genes marked with H3K36me3 in iridoid synthesis pathway predominantly expressed in roots. Additionally, the histone methyltransferase SnSDG8 was identified to regulate ectopic H3K36me3 in iridoid biosynthesis in response to warming temperatures. Our results highlight the epigenetic mechanisms of global warming on herb-derived products, significant for medicinal plant breeding under temperature stress.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。