Functional characterization and key residues engineering of a regiopromiscuity O-methyltransferase involved in benzylisoquinoline alkaloid biosynthesis in Nelumbo nucifera

莲藕中苄基异喹啉生物碱合成区域混杂性O-甲基转移酶的功能表征及关键残基工程

阅读:5
作者:Yuetong Yu, Yan Liu, Gangqiang Dong, JinZhu Jiang, Liang Leng, XianJu Liu, Jun Zhang, An Liu, Sha Chen

Abstract

Lotus (Nelumbo nucifera), an ancient aquatic plant, possesses a unique pharmacological activity that is primarily contributed by benzylisoquinoline alkaloids (BIAs). However, only few genes and enzymes involved in BIA biosynthesis in N. nucifera have been isolated and characterized. In the present study we identified the regiopromiscuity of an O-methyltransferase, designated NnOMT6, isolated from N. nucifera; NnOMT6 was found to catalyze the methylation of monobenzylisoquinoline 6-O/7-O, aporphine skeleton 6-O, phenylpropanoid 3-O, and protoberberine 2-O. We further probed the key residues affecting NnOMT6 activity via molecular docking and molecular dynamics simulation. Verification using site-directed mutagenesis revealed that residues D316, N130, L135, N176A, D269, and E328 were critical for BIA O-methyltransferase activities; furthermore, N323A, a mutant of NnOMT6, demonstrated a substantial increase in catalytic efficiency for BIAs and a broader acceptor scope compared with wild-type NnOMT6. To the best of our knowledge, this is the first study to report the O-methyltransferase activity of an aporphine skeleton without benzyl moiety substitutions in N. nucifera. The study findings provide biocatalysts for the semisynthesis of related medical compounds and give insights into protein engineering to strengthen O-methyltransferase activity in plants.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。