Structural and functional analyses of a glutaminyl cyclase from Ixodes scapularis reveal metal-independent catalysis and inhibitor binding

肩突硬蜱谷氨酰胺环化酶的结构和功能分析揭示了金属独立的催化作用和抑制剂结合

阅读:5
作者:Kai-Fa Huang, Hui-Ling Hsu, Shahid Karim, Andrew H-J Wang

Abstract

Glutaminyl cyclases (QCs) from mammals and Drosophila are zinc-dependent enzymes that catalyze N-terminal pyroglutamate formation of numerous proteins and peptides. These enzymes have been found to be critical for the oviposition and embryogenesis of ticks, implying that they are possible physiological targets for tick control. Here, 1.10-1.15 Å resolution structures of a metal-independent QC from the black-legged tick Ixodes scapularis (Is-QC) are reported. The structures exhibit the typical scaffold of mammalian QCs but have two extra disulfide bridges that stabilize the central β-sheet, resulting in an increased thermal stability. Is-QC contains ~0.5 stoichiometric zinc ions, which could be removed by 1 mM EDTA. Compared with the Zn-bound form, apo-Is-QC has a nearly identical active-site structure and stability, but unexpectedly possesses significantly increased QC activities towards both synthetic and physiological substrates. Enzyme-kinetic analysis revealed that apo-Is-QC has a stronger substrate-binding affinity, suggesting that bound zinc interferes with substrate binding during catalysis. The structures of Is-QC bound to the inhibitor PBD150 revealed similar binding modes to both forms of Is-QC, with the exception of the inhibitor imidazole ring, which is consistent with the comparable inhibition activities of the inhibitor towards both forms of Is-QC. These findings have implications for the design of new QC inhibitors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。