Photooxidative stress activates a complex multigenic response integrating the phenylpropanoid pathway and ethylene, leading to lignin accumulation in apple (Malus domestica Borkh.) fruit

光氧化应激激活了苯丙烷途径和乙烯相结合的复杂多基因反应,导致苹果(Malus domestica Borkh.)果实中木质素的积累

阅读:9
作者:Carolina A Torres, Constanza Azocar, Patricio Ramos, Ricardo Pérez-Díaz, Gloria Sepulveda, María A Moya-León

Abstract

Photooxidative stress, when combined with elevated temperatures, triggers various defense mechanisms leading to physiological, biochemical, and morphological changes in fruit tissue. Furthermore, during sun damage, apple fruit undergo textural changes characterized by high flesh firmness compared to unexposed fruit. Fuji and Royal Gala apples were suddenly exposed to sunlight on the tree and then sampled for up to 29 days. Cell wall components and lignin biosynthetic pathway analyses were carried out on the fruit tissue. At harvest, Fuji apples with different sun exposure levels, such as exposed to direct sunlight (Exp), shaded (Non-Exp), and with severe sun damage (Sev), were also characterized. In fruit suddenly exposed to sunlight, the expression levels of phenylpropanoid-related genes, phenylalanine ammonia lyase (MdPAL), chalcone synthase (MdCHS), and flavanone-3-hydroxylase (MdF3H), were upregulated in the skin and flesh of Exp and Sev. Exposure had little effect on the lignin-related genes caffeic acid O-methyltransferase 1 (MdCOMT1) and cinnamyl alcohol dehydrogenase (MdCAD) in the skin; however, the expression of these genes was highly induced in the flesh of Exp and Sev in both cultivars. Lignin deposition increased significantly in skin with sun injury (Sev); in flesh, this increase occurred late during the stress treatment. Additionally, the ethylene biosynthesis genes 1-aminocyclopropane-1-carboxylate synthase (MdACS) and 1-aminocyclopropane-1-carboxylate oxidase (MdACO) were highly expressed in the skin and flesh tissues but were more upregulated in Sev than in Exp during the time-course experiment, which paralleled the induction of the phenylpropanoid pathway and lignin accumulation. At harvest, flesh from Sev fruit exhibited higher firmness than that from Non-Exp and Exp fruit, although no differences were observed in the alcohol-insoluble residues (AIR) among groups. The fractionation of cell wall polymers revealed an increase in the uronic acid contents of the water-soluble pectin fraction (WSF) in Exp and Sev tissues compared to Non-Exp tissues, while the other pectin-rich fractions, that is, CDTA-soluble (CSF) and Na2CO3-soluble (NSF), were increased only in Sev. The amount of hemicellulose and cellulose did not differ among fruit conditions. These findings suggest that increases in the flesh firmness of apples can be promoted by photooxidative stress, which is associated with the induction of lignin accumulation in the skin and flesh of stressed fruit, with the involvement of stress phytohormones such as ethylene.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。