A novel clinically relevant graft-versus-leukemia model in humanized mice

一种新型临床相关人源化小鼠移植物抗白血病模型

阅读:4
作者:Bei Jia, Chenchen Zhao, Michael Bayerl, Hiroko Shike, David F Claxton, W Christopher Ehmann, Shin Mineishi, Todd D Schell, Pan Zheng, Yi Zhang, Leonard D Shultz, K Sandeep Prabhu, Robert F Paulson, Hong Zheng

Abstract

The prognosis for acute myeloid leukemia (AML) relapse post allogeneic hematopoietic stem cell transplantation (alloSCT) is dismal. Novel effective treatment is urgently needed. Clinical benefit of alloSCT greatly relies on the graft-versus-leukemia (GVL) effect. The mechanisms that mediate immune escape of leukemia (thus causing GVL failure) remain poorly understood. Studies of human GVL have been hindered by the lack of optimal clinically relevant models. Here, using our large, longitudinal clinical tissue bank that include AML cells and G-CSF mobilized donor hematopoietic stem cells (HSCs), we successfully established a novel GVL model in humanized mice. Donor HSCs were injected into immune-deficient NOD-Cg-Prkdcscid IL2rgtm1Wjl /SzJ (NSG) mice to build humanized mice. Immune reconstitution in these mice recapitulated some clinical scenario in the patient who received the corresponding HSCs. Allogeneic but HLA partially matched patient-derived AML cells were successfully engrafted in these humanized mice. Importantly, we observed a significantly reduced (yet incomplete elimination of) leukemia growth in humanized mice compared with that in control NSG mice, demonstrating a functional (but defective) GVL effect. Thus, for the first time, we established a novel humanized mouse model that can be used for studying human GVL responses against human AML cells in vivo. This novel clinically relevant model provides a valuable platform for investigating the mechanisms of human GVL and development of effective leukemia treatments.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。