Protein disulfide-isomerase interacts with soluble guanylyl cyclase via a redox-based mechanism and modulates its activity

蛋白质二硫键异构酶通过基于氧化还原的机制与可溶性鸟苷酸环化酶相互作用并调节其活性

阅读:7
作者:Erin J Heckler, Pierre-Antoine Crassous, Padmamalini Baskaran, Annie Beuve

Abstract

NO binds to the receptor sGC (soluble guanylyl cyclase), stimulating cGMP production. The NO-sGC-cGMP pathway is a key component in the cardiovascular system. Discrepancies in sGC activation and deactivation in vitro compared with in vivo have led to a search for endogenous factors that regulate sGC or assist in cellular localization. In our previous work, which identified Hsp (heat-shock protein) 70 as a modulator of sGC, we determined that PDI (protein disulfide-isomerase) bound to an sGC-affinity matrix. In the present study, we establish and characterize this interaction. Incubation of purified PDI with semi-purified sGC, both reduced and oxidized, resulted in different migration patterns on non-reducing Western blots indicating a redox component to the interaction. In sGC-infected COS-7 cells, transfected FLAG-tagged PDI and PDI CXXS (redox active site 'trap mutant') pulled down sGC. This PDI-sGC complex was resolved by reductant, confirming a redox interaction. PDI inhibited NO-stimulated sGC activity in COS-7 lysates, however, a PDI redox-inactive mutant PDI SXXS did not. Together, these data unveil a novel mechanism of sGC redox modulation via thiol-disulfide exchange. Finally, in SMCs (smooth muscle cells), endogenous PDI and sGC co-localize by in situ proximity ligation assay, which suggests biological relevance. PDI-dependent redox regulation of sGC NO sensitivity may provide a secondary control over vascular homoeostasis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。