San Jie Tong Mai Fang Protects Against Atherosclerosis Progression by Regulating Macroautophagy through the PI3K/AKT/mTOR Signaling Pathway

散结通脉方通过 PI3K/AKT/mTOR 信号通路调节巨自噬,预防动脉粥样硬化进展

阅读:10
作者:Pengfei Li, Hongyu Li, Xiaohui Li, Shuangdi Li, Hanying Xu, Junfeng Cui, Guangyu Cheng, Yinghui Liu, Xiaolin Xu, Yuning Xin, Aidong Liu

Abstract

Many studies have confirmed that macrophage autophagy injury negatively impacts the pathogenesis of atherosclerosis (AS). Meanwhile, the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway affects AS progression by regulating macrophage autophagy. We previously reported that the herbal formula San Jie Tong Mai Fang (SJTMF) elicits lipid regulatory and anti-inflammatory properties. Hence, the current study used an ApoE -/- high-fat diet-fed mouse model to determine whether SJTMF elicits protective effects against AS progression by means of the regulation of macrophage autophagy through the PI3K/AKT/mTOR signaling pathway. Our results show that SJTMF reduced the number of atherosclerotic plaques, foam cell formation, and intimal thickness in mouse aorta. In addition, SJTMF improved blood lipid metabolism and inflammatory levels in mice. We also observed that SJTMF caused macrophages to be polarized toward the M2 phenotype through the inhibition of the PI3K/AKT/mTOR signaling pathway. In addition, the abundances of LC3-II/I and beclin1 proteins-key autophagy molecules-were increased, whereas that of p62 was decreased, resulting in the promotion of macrophage autophagy. Taken together, these findings indicate that SJTMF may regulate the polarization of macrophages by inhibiting the PI3K/AKT/mTOR signaling pathway, thereby reducing atherosclerotic plaque damage in ApoE -/- mice, thereby promoting macrophage autophagy and eliciting a significant antiarteriosclerosis effect. Hence, SJTMF may represent a promising new candidate drug for the treatment of AS.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。