The active core in a triazole peptide dual-site antagonist of HIV-1 gp120

HIV-1 gp120 三唑肽双位点拮抗剂的活性核心

阅读:5
作者:Muddegowda Umashankara, Karyn McFadden, Isaac Zentner, Arne Schön, Srivats Rajagopal, Ferit Tuzer, Syna A Kuriakose, Mark Contarino, Judith Lalonde, Ernesto Freire, Irwin Chaiken

Abstract

In an effort to identify broadly active inhibitors of HIV-1 entry into host cells, we previously reported a family of dodecamer triazole-peptide conjugates with nanomolar affinity for the viral surface protein gp120. This peptide class exhibits potent antiviral activity and the capacity to simultaneously inhibit interaction of the viral envelope protein with both CD4 and co-receptor. In this investigation, we minimized the structural complexity of the lead triazole inhibitor HNG-156 (peptide 1) to explore the limits of the pharmacophore that enables dual antagonism and to improve opportunities for peptidomimetic design. Truncations of both carboxy- and amino-terminal residues from the parent 12-residue peptide 1 were found to have minimal effects on both affinity and antiviral activity. In contrast, the central triazole(Pro)-Trp cluster at residues 6 and 7 with ferrocenyl-triazole(Pro) (Ftp) was found to be critical for bioactivity. Amino-terminal residues distal to the central triazole(Pro)-Trp sequence tolerated decreasing degrees of side chain variation upon approaching the central cluster. A peptide fragment containing residues 3-7 (Asn-Asn-Ile-Ftp-Trp) exhibited substantial direct binding affinity, antiviral potency, dual receptor site antagonism, and induction of gp120 structuring, all properties that define the functional signature of the parent compound 1. This active core contains a stereochemically specific hydrophobic triazole(Pro)-Trp cluster, with a short N-terminal peptide extension providing groups for potential main chain and side chain hydrogen bonding. The results of this work argue that the pharmacophore for dual antagonism is structurally limited, thereby enhancing the potential to develop minimized peptidomimetic HIV-1 entry inhibitors that simultaneously suppress binding of envelope protein to both of its host cell receptors. The results also argue that the target epitope on gp120 is relatively small, pointing to a localized allosteric inhibition site in the HIV-1 envelope that could be targeted for small-molecule inhibitor discovery.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。