Immunological and antitumor effects of IL-23 as a cancer vaccine adjuvant

IL-23 作为癌症疫苗佐剂的免疫和抗肿瘤作用

阅读:9
作者:Willem W Overwijk, Karin E de Visser, Felicia H Tirion, Laurina A de Jong, Thijs W H Pols, Yme U van der Velden, Jasper G van den Boorn, Anna M Keller, Wim A Buurman, Marc R Theoret, Bianca Blom, Nicholas P Restifo, Ada M Kruisbeek, Robert A Kastelein, John B A G Haanen

Abstract

The promising, but modest, clinical results of many human cancer vaccines indicate a need for vaccine adjuvants that can increase both the quantity and the quality of vaccine-induced, tumor-specific T cells. In this study we tested the immunological and antitumor effects of the proinflammatory cytokine, IL-23, in gp100 peptide vaccine therapy of established murine melanoma. Neither systemic nor local IL-23 alone had any impact on tumor growth or tumor-specific T cell numbers. Upon specific vaccination, however, systemic IL-23 greatly increased the relative and absolute numbers of vaccine-induced CD8(+) T cells and enhanced their effector function at the tumor site. Although IL-23 specifically increased IFN-gamma production by tumor-specific T cells, IFN-gamma itself was not a primary mediator of the vaccine adjuvant effect. The IL-23-induced antitumor effect and accompanying reversible weight loss were both partially mediated by TNF-alpha. In contrast, local expression of IL-23 at the tumor site maintained antitumor activity in the absence of weight loss. Under these conditions, it was also clear that enhanced effector function of vaccine-induced CD8(+) T cells, rather than increased T cell number, is a primary mechanism underlying the antitumor effect of IL-23. Collectively, these results suggest that IL-23 is a potent vaccine adjuvant for the induction of therapeutic, tumor-specific CD8(+) T cell responses.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。