Adiponectin Mediates the Protection of H2S Against Chronic Restraint Stress-Induced Cognitive Impairment via Attenuating Hippocampal Damage

脂联素通过减轻海马损伤介导 H2S 对慢性束缚应激引起的认知障碍的保护作用

阅读:6
作者:Qiong-Yan Tang, Min Li, Lei Chen, Jia-Mei Jiang, Sheng-Lan Gao, Fan Xiao, Wei Zou, Ping Zhang, Yong-Jun Chen

Abstract

Emerging evidence shows that chronic restraint stress (CRS) can induce cognitive dysfunction, which involves in hippocampal damage. Our recent research reveals that hydrogen sulfide (H2S), a novel gasotransmitter, protects against CRS-induced cognitive impairment, but the underlying mechanism remains unclear. Adiponectin, the most abundant plasma adipokine, has been shown to elicit neuroprotective property and attenuate cognitive impairment. Hence, the present work was aimed to explore whether adiponectin mediates the protective effect of H2S on CRS-induced cognitive impairment by inhibiting hippocampal damage. Results found that administration of Anti-Acrp30, a neutralizing antibody of adiponectin, obviously reverses sodium hydrosulfide (NaHS, an exogenous H2S donor)-induced the inhibition on CRS-induced cognitive impairment according to Y-maze test, Novel object recognition (NOR) test, and Morris water maze (MWM) test. In addition, Anti-Acrp30 blocked the protective effect of NaHS on hippocampal apoptosis in rats-subjected with CRS as evidenced by the pathological changes in hippocampus tissues in hematoxylin and eosin (HE) staining and the increases in the amount of the condensed and stained to yellowish-brown or brownish yellow neuron nucleuses in terminal deoxynucleotidyl transferase transfer-mediated dUTP nick end-labeling (TUNEL) staining as well as the expression of hippocampal pro-apoptotic protein (Bax), and a decrease in the expression of hippocampal anti-apoptotic protein (Bcl-2). Furthermore, Anti-Acrp30 mitigated the inhibitory effect of NaHS on CRS-induced oxidative stress as illustrated by the up-regulation of malondialdehyde (MDA) content and the down-regulation of superoxide dismutase (SOD) activity and glutathione (GSH) level in the hippocampus. Moreover, Anti-Acrp30 eliminated NaHS-induced the reduction of endoplasmic reticulum (ER) stress-related proteins including binding immunoglobulin protein (BIP), C/EBP homologous protein (CHOP), and Cleaved Caspase-12 expressions in the hippocampus of rats-exposed to CRS. Taken together, these results indicated that adiponectin mediates the protection of H2S against CRS-induced cognitive impairment through ameliorating hippocampal damage.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。