XBP-1 Remodels Lipid Metabolism to Extend Longevity

XBP-1重塑脂质代谢以延长寿命

阅读:2
作者:Soudabeh Imanikia ,Ming Sheng ,Cecilia Castro ,Julian L Griffin ,Rebecca C Taylor

Abstract

The endoplasmic reticulum unfolded protein response (UPRER) is a cellular stress response that maintains homeostasis within the secretory pathway, regulates glucose and lipid metabolism, and influences longevity. To ask whether this role in lifespan determination depends upon metabolic intermediaries, we metabotyped C. elegans expressing the active form of the UPRER transcription factor XBP-1, XBP-1s, and found many metabolic changes. These included reduced levels of triglycerides and increased levels of oleic acid (OA), a monounsaturated fatty acid associated with lifespan extension in C. elegans. Here, we show that constitutive XBP-1s expression increases the activity of lysosomal lipases and upregulates transcription of the Δ9 desaturase FAT-6, which is required for the full lifespan extension induced by XBP-1s. Dietary OA supplementation increases the lifespan of wild-type, but not xbp-1s-expressing animals and enhances proteostasis. These results suggest that modulation of lipid metabolism by XBP-1s contributes to its downstream effects on protein homeostasis and longevity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。