Entropy-Driven Molecular Beacon Assisted Special RCA Assay with Enhanced Sensitivity for Room Temperature DNA Biosensing

熵驱动分子信标辅助特殊 RCA 检测法,增强室温 DNA 生物传感灵敏度

阅读:7
作者:Shurui Tao, Yi Long, Guozhen Liu

Abstract

The Phi29 DNA polymerase is renowned for its processivity in synthesizing single-stranded DNA amplicons by rolling around a circularized DNA template. However, DNA synthesis rolling circle amplification (RCA) is significantly hindered by the secondary structure in the circular template. To overcome this limitation, an engineered circular template without secondary structure could be utilized to improve the sensitivity of RCA-based assays without increasing its complexity. We herein proposed an entropy-driven special RCA technology for the detection of HPV16 E7 gene at room temperature. The strategy is composed of a molecular beacon containing a loop region for nucleic acid target recognition and a stem region to initiate RCA. With the target analyte, the stem region of the molecular beacon will be exposed and then hybridized with a special circular template to initiate the DNA amplification. We tested different designs of the molecular beacon sequence and optimized the assay's working conditions. The assay achieved a sensitivity of 1 pM in 40 min at room temperature. The sensitivity of this assay, at 1 pm, is about a hundred-fold greater than that of conventional linear RCA performed in solution. Our proposed sensor can be easily reprogrammed for detecting various nucleic acid markers by altering the molecular beacon's loop. Its simplicity, rapid assay time, and low cost make it superior to RCA sensors that utilize similar strategies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。