The Pseudomonas aeruginosa N-acylhomoserine lactone quorum sensing molecules target IQGAP1 and modulate epithelial cell migration

铜绿假单胞菌 N-酰基高丝氨酸内酯群体感应分子靶向 IQGAP1 并调节上皮细胞迁移

阅读:6
作者:Thommie Karlsson, Maria V Turkina, Olena Yakymenko, Karl-Eric Magnusson, Elena Vikström

Abstract

Quorum sensing (QS) signaling allows bacteria to control gene expression once a critical population density is achieved. The Gram-negative human pathogen Pseudomonas aeruginosa uses N-acylhomoserine lactones (AHL) as QS signals, which coordinate the production of virulence factors and biofilms. These bacterial signals can also modulate human cell behavior. Little is known about the mechanisms of the action of AHL on their eukaryotic targets. Here, we found that N-3-oxo-dodecanoyl-L-homoserine lactone 3O-C(12)-HSL modulates human intestinal epithelial Caco-2 cell migration in a dose- and time-dependent manner. Using new 3O-C(12)-HSL biotin and fluorescently-tagged probes for LC-MS/MS and confocal imaging, respectively, we demonstrated for the first time that 3O-C(12)-HSL interacts and co-localizes with the IQ-motif-containing GTPase-activating protein IQGAP1 in Caco-2 cells. The interaction between IQGAP1 and 3O-C(12)-HSL was further confirmed by pull-down assay using a GST-tagged protein with subsequent Western blot of IQGAP1 and by identifying 3O-C(12)-HSL with a sensor bioassay. Moreover, 3O-C(12)-HSL induced changes in the phosphorylation status of Rac1 and Cdc42 and the localization of IQGAP1 as evidenced by confocal and STED microscopy and Western blots. Our findings suggest that the IQGAP1 is a novel partner for P. aeruginosa 3O-C(12)-HSL and likely the integrator of Rac1 and Cdc42- dependent altered cell migration. We propose that the targeting of IQGAP1 by 3O-C(12)-HSL can trigger essential changes in the cytoskeleton network and be an essential component in bacterial--human cell communication.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。