Transporter modulation of molnupiravir and its metabolite β-D-N4-hydroxycytidine across the blood-brain barrier in a rat

莫努匹拉韦及其代谢物 β-D-N4-羟基胞苷在大鼠血脑屏障中的转运调节

阅读:5
作者:Chun-Hao Chang, Wen-Ya Peng, Wan-Hsin Lee, Ling Yang, Tung-Yi Lin, Muh-Hwa Yang, Tung-Hu Tsai

Background

The antiviral drug molnupiravir is an orally bioavailable prodrug of the nucleoside analog β-D-N4-hydroxycytidine (NHC), which is used to treat coronavirus disease 2019 (COVID-19). However, there is very little information on the barrier distribution of molnupiravir. Our hypothesis is that molnupiravir and NHC can penetrate the blood‒brain barrier (BBB) into brain tissue and that nucleoside transporters (equilibrative nucleoside transporters; ENT and concentrative nucleoside transporters; CNT) can modulate this process.

Conclusions

In summary, molnupiravir rapidly transforms into NHC and crosses the BBB and reaches the brain at approximately 0.3-0.8% of the blood‒brain ratio. The maximum concentration of NHC in the blood and brain is above the average half maximal inhibitory concentration (IC50) of the drug required to treat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, suggesting a therapeutic effect. The penetration of NHC is modulated by NBMPR. These findings provide constructive information on brain disorders in clinical patients with COVID-19.

Methods

To investigate the mechanism of molnupiravir transport through the BBB, multiple microdialyses coupled to a validated ultra-high-performance liquid chromatography tandem mass spectrometry (UHPLC‒MS/MS) was developed to monitor dialysates, and nitrobenzylthioinosine (NBMPR; an inhibitor of ENT) was administered concomitantly with molnupiravir (100 mg/kg, i.v.) in the male rat.

Results

Here, we show that molnupiravir is rapidly metabolized to NHC in the blood and crossed the BBB in 20 min. Furthermore, when NBMPR is concomitantly administered to inhibit efflux, the concentrations of molnupiravir and NHC in the brain increased significantly. Conclusions: In summary, molnupiravir rapidly transforms into NHC and crosses the BBB and reaches the brain at approximately 0.3-0.8% of the blood‒brain ratio. The maximum concentration of NHC in the blood and brain is above the average half maximal inhibitory concentration (IC50) of the drug required to treat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, suggesting a therapeutic effect. The penetration of NHC is modulated by NBMPR. These findings provide constructive information on brain disorders in clinical patients with COVID-19.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。