Targeting of myelin protein zero in a spontaneous autoimmune polyneuropathy

自发性自身免疫性多发性神经病中髓鞘蛋白零的靶向作用

阅读:2
作者:Hye-Jung Kim, Cha-Gyun Jung, Mark A Jensen, Danuta Dukala, Betty Soliven

Abstract

Elimination of the costimulatory molecule B7-2 prevents autoimmune diabetes in NOD mice, but leads to the development of a spontaneous autoimmune polyneuropathy (SAP), which resembles the human disease chronic inflammatory demyelinating polyneuropathy (CIDP). In this study, we examined the immunopathogenic mechanisms in this model, including identification of SAP Ags. We found that B7-2-deficient NOD mice exhibit changes in cytokine and chemokine gene expression in spleens over time. There was an increase in IL-17 and a decrease in IL-10 transcript levels at 4 mo (preclinical phase), whereas IFN-gamma expression peaked at 8 mo (clinical phase). There was also an increase in transcript levels of Th1 cytokines, CXCL10, and RANTES in sciatic nerves of mice that developed SAP. Splenocytes from SAP mice exhibited proliferative and Th1 cytokine responses to myelin P0 (180-199), but not to other P0 peptides or P2 (53-78). Adoptive transfer of P0-reactive T cells generated from SAP mice induced neuropathy in four of six NOD.SCID mice. Data from i.v. tolerance studies indicate that myelin P0 is one of the autoantigens targeted by T cells in SAP in this model. The expression of P0 by peri-islet Schwann cells provides a potential mechanism linking islet autoimmunity and inflammatory neuropathy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。