Functional analysis of histone methyltransferase g9a in B and T lymphocytes

组蛋白甲基转移酶g9a在B和T淋巴细胞中的功能分析

阅读:3
作者:Lance R Thomas, Hiroki Miyashita, Robin Milley Cobb, Steven Pierce, Makoto Tachibana, Elias Hobeika, Michael Reth, Yoichi Shinkai, Eugene M Oltz

Abstract

Lymphocyte development is controlled by dynamic repression and activation of gene expression. These developmental programs include the ordered, tissue-specific assembly of Ag receptor genes by V(D)J recombination. Changes in gene expression and the targeting of V(D)J recombination are largely controlled by patterns of epigenetic modifications imprinted on histones and DNA, which alter chromatin accessibility to nuclear factors. An important component of this epigenetic code is methylation of histone H3 at lysine 9 (H3K9me), which is catalyzed by histone methyltransferases and generally leads to gene repression. However, the function and genetic targets of H3K9 methyltransferases during lymphocyte development remain unknown. To elucidate the in vivo function of H3K9me, we generated mice lacking G9a, a major H3K9 histone methyltransferase, in lymphocytes. Surprisingly, lymphocyte development is unperturbed in G9a-deficient mice despite a significant loss of H3K9me2 in precursor B cells. G9a deficiency is manifest as modest defects in the proliferative capacity of mature B cells and their differentiation into plasma cells following stimulation with LPS and IL-4. Precursor lymphocytes from the mutant mice retain tissue- and stage-specific control over V(D)J recombination. However, G9a deficiency results in reduced usage of Iglambda L chains and a corresponding inhibition of Iglambda gene assembly in bone marrow precursors. These findings indicate that the H3K9me2 epigenetic mark affects a highly restricted set of processes during lymphocyte development and activation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。